Регулирование скорости вращения и устойчивость работы двигателей постоянного тока

опубликовано: .

     СОДЕРЖАНИЕ:

  1. Способы регулирования скорости вращения.
  2. Условия устойчивости работы двигателя.
  3. Изменение режима работы.

Способы регулирования скорости вращения

Способы регулирования скорости вращения двигателей постоянного тока следуют из соотношений (7) и (9), представленных в статье "Общие сведения о двигателях постоянного тока". Возможны три способа регулирования скорости вращения.

1. Наиболее удобным, распространенным и экономичным является способ регулирования скорости путем изменения потока Фδ, то есть тока возбуждения iв.

С уменьшением Фδ, согласно выражению (7), представленному в статье "Общие сведения о двигателях постоянного тока", скорость возрастает. Двигатели рассчитываются для работы при номинальном режиме с наибольшим значением Фδ, то есть с наименьшей скоростью n. Поэтому практически можно только уменьшать Фδ.

Следовательно, рассматриваемый способ позволяет регулировать скорость вверх от номинальной. При таком регулировании коэффициент полезного действия (к. п. д.) двигателя остается высоким, так как мощность возбуждения мала, в частности мала мощность реостатов для регулирования тока возбуждения. К тому же при уменьшении iв мощность возбуждения U × iв уменьшается.
Верхний предел регулирования скорости вращения ограничивается механической прочностью машины и условиями ее коммутации.

При высоких скоростях коммутация ухудшается вследствие увеличения вибрации щеточного аппарата, неустойчивости щеточного контакта и возрастания реактивной электродвижущей силы (э. д. с.), а также вследствие увеличения максимального напряжения между коллекторными пластинами в результате ослабления основного поля и усиления при этом искажающего влияния поперечной реакции якоря.

Для увеличения диапазона регулирования n посредством ослабления поля в машинах малой и средней  мощности с волновой обмоткой якоря иногда применяют раздельное питание катушек возбуждения отдельных полюсов. При этом в одной группе полюсов сохраняют iв = const и большой поток со значительным насыщением участков магнитной цепи, а в другой группе полюсов iв и поток уменьшают. Искажение влияния поперечной реакции якоря под первой группой полюсов в этом случае будет проявляться значительно слабее. Так как в волновой обмотке напряжение между соседними коллекторными пластинами складывается из э. д. с. p секций, расположенных под всеми полюсами, то в результате такого регулирования потока полюсов распределение напряжения между пластинами будет более равномерным.

2. Другой способ регулирования скорости заключается во включении последовательно в цепь якоря реостата или регулируемого сопротивления Rра.

Вместо выражения (7), представленного в статье "Общие сведения о двигателях постоянного тока", при этом имеем

(1)

Этот способ дает возможность регулировать скорость вниз от номинальной и связан со значительными потерями в сопротивлении Rра и понижением к. п. д.

Действительно, при номинальном токе якоря Iа = Iан среднее значение числителя равенства (7), представленного в статье "Общие сведения о двигателях постоянного тока", в относительных единицах равно

U*Rа* × Iан* = 1 – 0,05 = 0,95.

Если при Фδ = const необходимо уменьшить скорость вдвое, то нужно уменьшить этот числитель вдвое, то есть

U*Rа* × Iан*Rра* × Iан* = 1 – 0,05 – Rра* × Iан* = 0,475.

Так как U* = Iан* = 1, то при этом

Rра* = 0,95 – 0,475 = 0,475 ,

то есть в реостате будет теряться 47,5% приложенного напряжения и столько же мощности, подводимой к цепи якоря. По этой причине данный способ применяется в основном для двигателей небольшой мощности, а для более мощных двигателей используется редко и только кратковременно (пуско-наладочные режимы и так далее).

3. Регулирование скорости осуществляется также путем регулирования напряжения цепи якоря. Так как работа двигателя при U > Uн недопустима, то данный способ, согласно выражениям (7) и (9), представленным в статье "Общие сведения о двигателях постоянного тока"), дает возможность регулировать скорость также вниз от номинальной. К. п. д. двигателя при этом остается высоким, так как никаких добавочных источников потерь в схему двигателя не вносится.

Однако в этом случае необходимо отдельный источник тока с регулируемым напряжением, что удорожает установку.

Отметим, что регулирование скорости путем изменения Iа невозможно, хотя такая возможность на первый взгляд вытекает из равенства (7), представленного в статье "Общие сведения о двигателях постоянного тока". Дело в том, что, согласно равенству (3), представленному в статье "Общие сведения о двигателях постоянного тока", двигатель при каждой скорости вращения должен развивать определенный момент M, равный моменту сопротивления механизма Mст при данном значении n. Но при этом в соответствии с выражением (8), представленным в статье "Общие сведения о двигателях постоянного тока", при заданном значении Фδ величина Iа в двигателе будет при каждом значении M тоже вполне определенной.

Условия устойчивости работы двигателя

При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и так далее). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы [смотрите выражение (3) в статье "Общие сведения о двигателях постоянного тока"], вследствие чего возникает момент Mдин и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы, например скорости вращения, тока якоря и так далее. Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы. При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (n, Iа и так далее) в каком-либо одном направлении, либо приводят к колебательному режиму с возрастанием амплитуд колебаний n, Iа и так далее. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Неустойчивая работа может быть также и у генераторов. В статье "Параллельная работа генераторов постоянного тока" была рассмотрена неустойчивость параллельной работы генераторов смешанного возбуждения при отсутствии уравнительного провода. Режим самовозбуждения генераторов постоянного тока (смотрите статью "Генераторы параллельного возбуждения") также, в сущности, представляет собой неустойчивый режим работы, так как iв и U непрерывно изменяются. Работа генератора параллельного возбуждения при Rн = Rв.кр также неустойчива, так как если несколько изменить величину Rв, то напряжение U значительно изменится, то есть возрастет до некоторого конечного значения или упадет почти до нуля.

Устойчивость работы двигателя зависит от вида его механической характеристики M = f(n) и от вида зависимости момента сопротивления на валу от скорости вращения Mст = f(n). Вид последней зависимости определяется свойствами рабочей машины, приводимой в движение двигателем. Например, у металлорежущих станков, если установка резца не изменяется, Mст ≈ const, то есть Mст не зависит от скорости вращения, а у вентиляторов и насосов Mстnв квадрате.

Устойчивый и неустойчивый режим работы двигателя
Рисунок 1. Устойчивый (а) и неустойчивый (б) режим работы двигателя

На рисунке 1, а и б изображены два характерных случая работы двигателя. Установившемуся режиму работы (M = Mст) со скоростью вращения n0 соответствует точка пересечения указанных двух характеристик.

Если зависимости M = f(n), и Mст = f(n) имеют вид, изображенный на рисунке 1, а, то при случайном увеличении n в результате возмущения на Δn тормозной момент Mст станет больше движущего M (Mст > M) и поэтому двигатель будет затормаживаться, что заставит ротор вернуться к исходной скорости n0. Точно так же, если в результате возмущения скорость двигателя уменьшится на Δn, то будет Mст < M, поэтому ротор станет ускоряться и снова будет n = n0. Таким образом, в рассматриваемом случае работа устойчива. Как следует из рисунка 1, а, при этом

(2)

что и является признаком, или критерием, устойчивости работы двигателя.

При зависимостях M = f(n) и Mст = f(n) вида рисунка 1, б работа неустойчива. Действительно, при увеличении n от n = n0 до n = n0 + Δn будет M > Mст, возникнет избыток движущего момента, скорость n начнет нарастать, причем избыточный момент MMст увеличится еще больше, n еще возрастет и так далее. Если в результате возмущения n = n0 – Δn, то M < Mст и n будет непрерывно уменьшаться. Поэтому работа в точке M = Mст и n = n0 невозможна. Как следует из рисунка 1, б, в этом случае

(3)

что является признаком неустойчивости работы двигателя.

Из изложенного следует, что двигатель с данной механической характеристикой M = f(n) может работать устойчиво или неустойчиво в зависимости от характеристики Mст = f(n) рабочей машины. Возникновение неустойчивости наиболее вероятно при такой механической характеристики двигателя M = f(n) или n = f(M), когда M и n увеличиваются или уменьшаются одновременно (рисунок 1, б). В частности, в этом случае работа неустойчива при Mст = f(n) = const (например, металлорежущие станки). Поэтому двигателей с такими механическими характеристиками не строят.

Изложенное здесь в равной мере относится к устойчивости двигателей как постоянного, так и переменного тока, а также любых видов двигателей.

Изменение режима работы

Двигатели постоянного тока, как, впрочем, и двигатели переменного тока, обладают при соблюдении условий устойчивости замечательной способностью автоматически, без внешнего регулирующего воздействия, приспосабливаться к изменившимся условиям работы. В этом смысле можно сказать, что электрические двигатели обладают свойством саморегулирования. Проиллюстрируем сказанное на примере двигателя параллельного возбуждения.

Допустим, что такой двигатель работает при U = const, iв = const и, следовательно, Фδ ≈ const и нагрузочный момент Mст, развиваемый рабочей машиной, увеличивается. Тогда M < Mст, возникает Mдин < 0 [смотрите выражение (2) в статье "Общие сведения о двигателях постоянного тока"] и n начинает уменьшаться. Но при этом будет уменьшаться также Eа; ток Iа [смотрите выражение (5) в статье "Общие сведения о двигателях постоянного тока"] и момент M [смотрите выражение (8) в статье "Общие сведения о двигателях постоянного тока"] начнут увеличиваться, причем это будет происходить до тех пор, пока снова не наступит равновесие моментов M = Mст. Аналогичным образом изменяется также режим, если Mст уменьшится, причем в этом случае n и Eа начнут увеличиваться, а Iа и M – уменьшаться до тех пор, пока снова будет M = Mст и Mдин = 0.

Критерий устойчивости работы двигателя
Рисунок 2. Переход двигателя параллельного возбуждения к новому режиму работы при уменьшении потока

Допустим теперь, что с помощью реостата Rр.в (смотрите рисунок 1, в статье "Пуск двигателей постоянного тока") уменьшен ток iв. При этом Фδ будет уменьшаться, однако вследствие механической инерции ротора скорость n в первый момент не изменится. Тогда, согласно выражению (6), представленному в статье "Общие сведения о двигателях постоянного тока", Eа уменьшится, а вследствие этого Iа и M возрастут [смотрите выражения 5 и 8 в статье "Общие сведения о двигателях постоянного тока"]. При этом будет M > Mст, в соответствие с равенством (2), представленным в статье "Общие сведения о двигателях постоянного тока", Mдин > 0, и скорость n начнет увеличиваться. Это вызовет, согласно тем же соотношениям, увеличение Eа и уменьшение Iа и M до тех пор, пока снова не наступит равновесие моментов M = Mст и Mдин = 0 (рисунок 2). При увеличении iв явления развиваются в обратном направлении. Необходимо отметить, что резких изменений iв при регулировании допускать нельзя, так как U и Eа [смотрите выражение 5 в статье "Общие сведения о двигателях постоянного тока"] являются близкими по значению и небольшое изменение Фδ и Eа ведет к большим изменениям Iа и M.

Аналогичным образом происходит переход к новому режиму при изменении других внешних условий (например, введение сопротивления в цепь якоря и так далее), а также в двигателях с другими способами возбуждения.

Из изложенного следует, что поведение двигателя при установившемся режиме работы и переходах к новому режиму работы всецело определяется уравнениями равновесия моментов и напряжения цепи якоря, выражения (2) и (4), представленные в статье "Общие сведения о двигателях постоянного тока").

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

1 1 1 1 1 Рейтинг 0.00 (0 Голоса -ов)