Примеры соединений измерительных трансформаторов

В электроустановках широко применяют измерительные трансформаторы тока и напряжения. Первичные обмотки трансформаторов тока включают в соответствующие участки первичной сети. Первичные обмотки трансформаторов напряжения присоединяют, например, к шинам. От вторичных обмоток питаются реле защиты, счетчики и измерительные приборы.

В установках высокого напряжения измерительные трансформаторы играют двоякую роль. Во-первых, они изолируют цепи реле, счетчиков и приборов от высокого напряжения. Для обеспечения безопасности один из выводов вторичной обмотки заземляют. Во-вторых, трансформаторы тока уменьшают ток, а трансформаторы напряжения снижают напряжение до величин, при которых удобно строить и присоединять приборы. Номинальный ток вторичной обмотки трансформатора тока 5, 2 или 1 А. Номинальное вторичное напряжение трансформатора напряжения 100 В.

Система обозначения выводов трансформаторов тока

поясняется рисунком 1, а. Слева на нем показано непосредственное включение реле Р и для какого-то момента времени стрелкой изображено направление тока. Справа реле включено через трансформатор тока. Выводы его первичной обмотки (линия) названы Л1 (начало) и Л2 (конец). Выводы вторичной обмотки (измерение) И1 (начало) и И2 (конец). Сравнивая левый и правый рисунки, легко заметить, что направление тока в реле в обоих случаях одинаково.

Система обозначения выводов трансформаторов напряжения

Начала обмоток называются A, B, C и a, b, c; концы X, Y, Z и x, y, z, то есть так же, как у силовых трансформаторов (смотрите статью "Группы соединения трансформаторов").

Измерительные трансформаторы, смотря по обстоятельствам, могут соединяться в звезду, неполную звезду, треугольник, разомкнутый и открытый треугольник. Реле, счетчики и измерительные приборы, питающиеся от измерительных трансформаторов, тоже могут различно соединяться как между собой, так и с измерительными трансформаторами. На схемах, если требуется, звездочками обозначают начала обмоток (смотрите например рисунок 1, г). Ниже даны типичные примеры.

Система обозначения выводов трансформаторов

Рисунок 1. Система маркировки выводов и примеры соединений трансформаторов тока. Звездочками обозначены начала обмоток.

Примеры соединений трансформаторов тока

На рисунке 1, б три трансформатора тока и реле Р1, Р2 и Р3 соединены в звезду. В нейтральный провод включено реле Р4.

В нормальном режиме, а также при трехфазном коротком замыкании токи проходят в реле Р1, Р2, Р3, но в реле Р4 тока нет, так как геометрическая сумма токов, проходящих через реле Р1, Р2 и Р3, равна нулю.

При двухфазных коротких замыканиях ток проходит в двух поврежденных фазах (например, в фазах A и C), срабатывают реле Р1 и Р3. В реле Р4 проходит сумма токов двух фаз. Но они в данном случае равны, а по направлению противоположны. Поэтому реле Р4 не срабатывает.

При однофазном коротком замыкании (например, замыкание на землю фазы B) срабатывают реле поврежденной фазы Р2 и Р4. Таким образом, нулевой провод звезды является фильтром токов нулевой последовательности. Токи прямой и обратной последовательности через него не проходят, так как каждая из этих систем в сумме дает нуль.

Принцип действия дифференциальной защиты трансформатора Т поясняет рисунок 1, в. Слева изображены направления токов при нормальной нагрузке, а также при внешнем коротком замыкании (I1 и I2 – токи в силовой цепи). Нетрудно видеть, что ток в реле Р близок к нулю, так как вторичные токи трансформаторов тока (смотрите стрелки) проходят через реле навстречу. Конечно, коэффициенты трансформации трансформаторов тока должны быть надлежащим образом подобраны.

При коротком замыкании внутри трансформатора (рисунок 1, в справа) или на его выводах направление тока меняется, токи в реле суммируются и оно срабатывает. На рисунке 1, г дан пример дифференциальной защиты трансформатора с соединением звезда – треугольник, то есть со сдвигом первичных и вторичных токов на 30°.

В таких случаях необходимо кроме компенсации неравенства первичных и вторичных токов (путем подбора коэффициентов трансформации трансформаторов тока) компенсировать сдвиг по фазе. Компенсация сдвига по фазе достигается соединением в треугольник трансформаторов тока, установленных со стороны звезды силового трансформатора, и соединением в звезду трансформаторов тока, установленных со стороны треугольника.

Важно при этом соблюсти следующие правила:
1. Соединения трансформаторов тока должны в точности соответствовать группе соединения силового трансформатора (смотрите статью "Группы соединения трансформаторов").
2. Трансформаторы тока и реле Р5, Р6 и Р7 должны быть соединены между собой таким образом, чтобы при внешнем коротком замыкании вторичные токи в соединительных проводах совпадали по направлению, а в реле были противоположны.

Трансформаторы напряжения

соединяют в звезду с выведенной нулевой точкой, что дает возможность измерять как линейные, так и фазные напряжения.

Для измерения линейных напряжений вольтметры включают между выводами A и B, B и C, C и A.

Для измерения фазных напряжений вольтметры включают между линейным и нулевым выводами (A0, B0, C0).

Если достаточно измерения одних линейных напряжений, то применяют соединение в открытый треугольник (смотрите рисунок 2, в, в статье "Разомкнутый треугольник. Открытый треугольник"). Для обнаружения замыканий на землю в сетях с изолированной нейтралью вторичные обмотки трансформаторов  напряжения  соединяют  в  разомкнутый  треугольник (смотрите рисунок 1, г, в статье "Разомкнутый треугольник. Открытый треугольник").

Пятистержневой трансформатор напряжения

Трехфазные трансформаторы напряжения (рисунок 2) выполняют обычно с пятью стержнями. Крайние стержни (без обмотки) служат для замыкания через них магнитных потоков нулевой последовательности. Эти потоки Ф0 в средних стержнях направлены в одну сторону и в сумме дают 3 Ф0.

Пятистержневой трансформатор напряжения

Рисунок 2. Пятистержневой трансформатор напряжения.

Трансформатор имеет три группы обмоток. Первичные обмотки имеют выводы A, B, C и 0. Вторичные обмотки a, b, c, 0 служат для измерения фазных и линейных напряжений. Дополнительные обмотки соединены в разомкнутый треугольник. На их выводах a1 и x1 напряжение возникает только при замыкании на землю (смотрите пояснения к рисунку 1, г, в статье "Разомкнутый треугольник. Открытый треугольник").

Другие, примеры даны в статье "Искусственная нулевая точка".

Источник: Каминский Е. А., "Звезда, треугольник, зигзаг" – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

12 января 2015 | Электротехника

В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения. Рассмотрим сущность...

22 сентября 2016 | Справочник электромеханика

Залогом долгой, безотказной работы любого электродвигателя является хорошая изоляция. Поэтому перед укладкой обмоток тщательно изолируют все части якоря, пазы и обмоткодержатели. Об этом в данной статье. Общие положения Якорь устанавливают на подшипники...

22 сентября 2016 | Справочник электромеханика

После проведения подготовительных работ связанных с ремонтом обмотки якоря следует заняться его разметкой. Разметка позволит безошибочно уложить новую обмотку. Читайте об этом в этой статье. Все якоря при изготовлении на заводе...

17 июля 2013 | Электротехника

В трехпроводных сетях трехфазного тока нейтрального провода нет. Однако в ряде случаев приходится создавать искусственную нулевую точку. Она может получиться при соединении в звезду трех одинаковых сопротивлений. Ими могут быть:...

05 июля 2013 | Трансформаторы

Назначение трансформаторов тока Трансформатором тока (ТТ) называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к...

Информационный сайт "Электромеханика", © 2011-2019. Копирование материалов запрещено.