Магнитное поле прямолинейного проводника с током

опубликовано: .

     СОДЕРЖАНИЕ:

  1. Магнитное поле.
  2. Правило буравчика.
  3. Магнитная индукция.
  4. Напряженность магнитного поля.
  5. Магнитный поток.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Магнитное поле вокруг проводника с током
Рисунок 1. Магнитное поле вокруг проводника с током
Направление магнитных индукционных линий
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Обозначение направления тока в проводниках

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Правило буравчика Правило правого винта
Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Магнитная индукция
Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ0магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ0 = 4 × π × 10-7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ0 называется напряженностью магнитного поля и обозначается буквой H:

или

B = H × µ × µ0 .

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

1 эр = 79,6 а/м ≈ 80 а/м ≈ 0,8 а/см .

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Ф = B × S .

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс.
1 мкс = 1 гс × 1 см2.

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

1 1 1 1 1 Рейтинг 0.00 (0 Голоса -ов)
Комментарии  
0 #1 Алина 16.05.2014 17:20
;-) Спасибо.
0 #2 Vit 05.03.2016 08:09
Мне кажется, что поле постоянного магнита и поле соленоида не совсем идентичны. В ролике показан проводник вокруг которого создаётся магнитное поле в виде концентрических окружностей. Во обще то это концентрических окружность должны двигаться вместе с электронами в проводнике, а не стоять на месте. :-x
0 #3 Fire 14.09.2016 22:40
Да, проясните пожалуйста комментарий от Vit

Ведь не существует же такого постоянного магнита (кольцевого, типа в виде буквы О), как магнитное поле вокруг проводника с током??
я так понимаю вокруг проводника происходит какая то динамика, в отличии от обычного магнита (да и вообще, возможно ли его так намагнитить по кругу?)
0 #4 Евгений 15.09.2016 07:53
Первое. Я обновил ссылку на видео о Гипотезе Ампера. Полагаю из него должно проясниться, что магнитное поле постоянного магнита и результирующее магнитное поле кольцевого проводника с током идентичны. За счет чего, там разъясняется.
Второе. Если постоянному магниту полосовой формы придать форму кольца, то его линии магнитной индукции, замыкаясь по кругу, будут напоминать линии магнитной индукции прямого проводника с током. Они будут полностью замыкаться в пределах самого магнита и рассеивания практически не будет.
Третье. Магнитное поле, как и электрическое, это вообще относительная понятие, вытекающее из теории Эйнштейна. Люди на уровне своего понимания природы напридумывали себе разных понятий, а дальше капнуть не могут. Всему причина прямолинейное мышление. Всех приучили так мыслить. Мыслить нужно образно, не боясь, что тебя осмеют. Правильно Vit мыслит, ведь если двигаться параллельно с зарядом никакого магнитного поля не будет, и силового воздействия от этого заряда тоже.