Основные характеристики проводников

опубликовано: .

Основными характеристиками проводниковых материалов являются:

  1. Удельное электрическое сопротивление;
  2. Температурный коэффициент сопротивления;
  3. Теплопроводность;
  4. Контактная разность потенциалов и термоэлектродвижущая сила;
  5. Временное сопротивление разрыву и относительное удлинение при растяжении.

Удельное электрическое сопротивление

ρ – величина, характеризующая способность материала оказывать сопротивление электрическому току. Удельное сопротивление выражается формулой:

Удельное электрическое сопротивление

Для длинных проводников (проводов, шнуров, жил кабелей, шин) длину проводника l обычно выражают в метрах, площадь поперечного сечения S – в мм², сопротивление проводника r – в Ом, тогда размерность удельного сопротивления

Данные удельных сопротивлений различных металлических проводников приведены в статье "Электрическое сопротивление и проводимость".

Температурный коэффициент сопротивления

α – величина, характеризующая изменение сопротивления проводника в зависимости от температуры.
Средняя величина температурного коэффициента сопротивления в интервале температур t2° - t1° может быть найдена по формуле:

Температурный коэффициент сопротивления

Данные температурных коэффициентов сопротивления различных проводниковых материалов приведены ниже в таблице.

Значение температурных коэффициентов сопротивления металлов

Наименование металла Температурный коэффициент сопротивления, 1/°С
Алюминий
Альдрей
Бронза
Вольфрам
Золото
Латунь
Медь
Молибден
Никель
Олово
Платина
Ртуть
Сталь
Серебро
Свинец
Цинк
Чугун
0,00403 – 0,00429
0,0036 – 0,0038
0,004
0,004 – 0,005
0,0036
0,002
0,004
0,0047 – 0,005
0,006
0,0043 – 0,0044
0,0025 – 0,0039
0,009
0,0057 – 0,006
0,0034 – 0,0036
0,0038 – 0,004
0,0039 – 0,0041
0,0009 – 0,001

Теплопроводность

λ – величина, характеризующая количество тепла, проходящее в единицу времени через слой вещества. Размерность теплопроводности

Теплопроводность имеет большое значение при тепловых расчетах машин, аппаратов, кабелей и других электротехнических устройств.

Значение теплопроводности λ для некоторых материалов

Серебро
Медь
Алюминий
Латунь
Железо, сталь
Бронза
Бетон
Кирпич
Стекло
Асбест
Дерево
Пробка
350 – 360
340
180 – 200
90 – 100
40 – 50
30 – 40
0,7 – 1,2
0,5 – 1,2
0,6 – 0,9
0,13 – 0,18
0,1 – 0,15
0,04 – 0,08

Из приведенных данных видно, что наибольшей теплопроводностью обладают металлы. У неметаллических материалов теплопроводность значительно ниже. Она достигает особенно низких значений у пористых материалов, которые применяю специально для тепловой изоляции. Согласно электронной теории высокая теплопроводность металлов обусловлена теми же электронами проводимости, что и электропроводность.

Контактная разность потенциалов и термоэлектродвижущая сила

Как было указано в статье "Металлические проводники", положительные ионы металла расположены в узлах кристаллической решетки, образующей как бы ее каркас. Свободные электроны заполняют решетку наподобие газа, который называют иногда "электронным газом". Давление электронного газа в металле пропорционально абсолютной температуре и числу свободных электронов в единице объема, которое зависит от свойств металла. При соприкосновении двух разнородных металлов в месте соприкосновения происходит выравнивание давления электронного газа. В результате диффузии электронов металл, у которого число электронов уменьшается, заряжается положительно, а металл, у которого число электронов увеличивается, заряжается отрицательно. В месте контакта возникает разность потенциалов. Эта разность пропорциональна разности температур металлов и зависит от их вида. В замкнутой цепи возникает термоэлектрический ток. Электродвижущая сила (ЭДС), которая создает этот ток, называется термоэлектродвижущей силой (термо-ЭДС).

Явление контактной разности потенциалов применяется в технике для измерения температуры при помощи термопар. При измерении малых токов и напряжений в цепи в местах соединения различных металлов может возникнуть большая разность потенциалов, которая будет искажать результаты измерений. В этом случае необходимо подобрать материалы так, чтобы точность измерений была высокой.

Временное сопротивление разрыву и относительное удлинение при растяжении

При выборе проводов, помимо сечения, материала проводов, изоляции необходимо учитывать их механическую прочность. Особенно это касается проводов воздушных линий электропередач. Провода испытывают растяжение. Под действием силы, приложенной к материалу, последний удлиняется. Если обозначить первоначальную длину l1, а конечную длину l2, то разность l1l2 = Δl будет абсолютным удлинением.

Отношение

называется относительным удлинением.

Сила, производящая разрыв материала, называется разрушающей нагрузкой, а отношение этой нагрузки к площади поперечного сечения материала в момент разрушения называется временным сопротивлением на разрыв и обозначается

Данные временных сопротивлений на разрыв для различных материалов приведены ниже.

Значение предела прочности на разрыв для различных металлов

Наименование металла Предел прочности на разрыв, кг/мм²
Алюминий
Альдрей
Бронза
Вольфрам
Золото
Латунь
Медь
Молибден
Никель
Олово
Платина
Ртуть
Сталь
Серебро
Свинец
Цинк
Чугун
8 – 25
30 – 38
31 – 135
100 – 300

30 – 70
27 – 44,9
80 – 250
40 – 70
2 – 5
15 – 35

70 – 75
15 – 30
0,95 – 2,0
14 – 29
12 – 32

Источник: Кузнецов М. И., "Основы электротехники" - 9-е издание, исправленное - Москва: Высшая школа, 1964 - 560с.

5 1 1 1 1 1 Рейтинг 5.00 (1 Голос)